Synthesis and Characterization of Novel Iodine(III) Compounds; Crystal Structures of Methoxy(trifluoromethyl)iodine(III) Chloride [CF₃I(Cl)OCH₃] and Dimethoxy(trifluoromethyl)iodine(III) [CF₃I(OCH₃)₂]

Rolf Minkwitz,*[a] Michael Berkei,[a] and Ralf Ludwig[a]

Keywords: Iodine / Structure elucidation / Vibrational spectroscopy

The reactions of CF₃I(Cl)F and CF₃IF₂ with (CH₃)₃SiOCH₃ lead to the novel iodine(III) compounds CF₃I(Cl)OCH₃ and CF₃I(OCH₃)₂, respectively. The crystal structure of CF₃I(Cl)OCH₃ confirms that it is a ternary, trifluoromethylsubstituted iodine(III) derivative. CF₃I(Cl)OCH₃ crystallizes in the triclinic space group $P\bar{1}$, with four formula units per unit cell with the dimensions a = 8.164(1), b = 8.802(1), c =10.237(1) Å and angles $\alpha = 97.10(1)^{\circ}$, $\beta = 91.41(1)^{\circ}$, $\gamma =$

115.00(1)°. CF₃I(OCH₃)₂ crystallizes in the monoclinic space group $P2_1/n$ with four formula units per unit cell with a =6.295(1), b = 15.607(1), c = 7.736(1) Å, and $\beta = 111.44(1)^{\circ}$. Both molecules have been additionally characterized by Raman, IR, and NMR spectroscopy and the experimental results are compared with quantum-mechanically calculated parameters.

Introduction

The chemistry of (trifluoromethyl)iodine(III) compounds is a well-explored field of research, although crystal structures have been obtained in only a few cases. The reported structures are limited to compounds having highly electronegative ligands, such as F, Cl, or ONO₂, in the apical positions.[1-3] These compounds are more stable and can be isolated more easily than derivatives having less electronegative ligands. According to Bent's rule, the apical positions are favourably occupied by the most electronegative ligands.^[4] These positions are characterized by 3-center-4electron bonds, in which the negative charge is located at the termini.^[5]

Since all attempts to synthesize CF₃I(OH)₂ have proven unsuccessful, we became interested in its alkyl-substituted derivatives CF₃I(OR)₂. The tendency of iodine to form double bonds with oxygen leads to destabilization of these compounds and favours condensation reactions leading to CF₃IO. Although methanolysis of PhIO leads to PhI-(OCH₃)₂ and Naumann et al. supposed a similar tendency of CF₃IO to form CF₃I(OCH₃)₂, no experimental details of this have yet been reported.^[6,7] In 1974, Oates and Winfield described the synthesis of $CF_3IF_{4-n}(OCH_3)_n$ (n = 1-4) by reaction of CF₃IF₄ with (CH₃)₃SiOCH₃.^[8] All the products were identified by their mass and NMR spectra. Since no similar investigation has been carried out in the case of iodine(III), it seemed desirable to study the reaction of CF₃IF₂ with (CH₃)₃SiOCH₃. In this reaction, CF₃I(F)OCH₃ is expected to be an observable intermediate. In general, ternary iodine(III) compounds are known to decompose by symmetrization in solution, even at low temperatures, and are thus difficult to isolate.^[9] In order to obtain ternary iodine(III) compounds, CF₃I(Cl)F represents a good starting material.^[9] In this compound, the I-F bond is elongated and the I-Cl bond is shortened. This renders it suitable for exchange reactions in which only the I-F bond is replaced.

In this work, we report the syntheses and crystal structures of CF₃I(Cl)OCH₃ and CF₃I(OCH₃)₂. As far as we are aware, this constitutes the first report of structural data for (trifluoromethyl)iodine(III) compounds substituted by methoxy groups.

Results and Discussion

Formation of CF₃I(Cl)OCH₃ and CF₃I(OCH₃)₂

The molecules were obtained by reactions of (methoxy)trimethylsilane with CF₃I(Cl)F and CF₃IF₂, respectively [Equations (1) and (2)]. This synthesis is analogous to the preparation of $CF_3IF_n(OCH_3)_{4-n}$ (n = 1-4) by Oates and Winfield. [8] The driving force behind these reactions is the formation of the thermodynamically favoured Si-F bond at the expense of the Si-O bond.

The fine colourless solids proved to be stable for several months at -70 °C under nitrogen, decomposing at about −40 °C. The iodine(III) compounds were found to be soluble in sulfur dioxide at -50 °C. In solution, they start to decompose even at temperatures below -50 °C.

Vibrational Spectra

observed Raman and IR frequencies $CF_3I(Cl)OCH_3$ and $CF_3I(OCH_3)_2$ are summarized in

Fachbereich Chemie der Universität Dortmund, 44221 Dortmund, Germany

Table 1. The vibrational spectra are assigned on the basis of C_1 symmetry for the molecules. For $CF_3I(Cl)OCH_3$, 27 fundamental vibrations are to be expected. The strongest line in the Raman spectrum at 509 cm⁻¹ corresponds to the I–O stretching mode. The I–Cl stretching mode can be assigned to the line at 304 cm⁻¹. This is in good accordance with assignments made for $CF_3I(Cl)ONO_2$ (326 cm⁻¹) and $CF_3I(Cl)F$ (304 cm⁻¹).^[3,9] The asymmetric CF_3 stretching modes are found in the range 1056 to 1209 cm⁻¹, while the symmetric mode is seen at about 1043 cm⁻¹. The corresponding bending modes are observed at 739 cm⁻¹ (δ_{as}

CF₃), 542 cm⁻¹ (δ_s CF₃), and in the range 243 to 265 cm⁻¹ (ρ CF₃). In the case of CF₃I(OCH₃)₂, the I–O stretching modes can be assigned to the strongest lines in the Raman spectrum at 532 cm⁻¹ (v_{as} IO₂) and 353 cm⁻¹ (v_s IO₂), respectively, while the IO₂ bending is seen at 236 cm⁻¹. For comparison, in CF₃I(ONO₂)₂, these vibrational modes are found at 705–734 cm⁻¹ (v_{as} IO₂), 332/346 cm⁻¹ (v_s IO₂), and 182/190 cm⁻¹ (δ IO₂).^[3] The C–I stretching mode is observed at about 277 cm⁻¹. The vibrational bands of the CF₃ and CH₃ groups were detected in the expected ranges.

Table 1. Vibrational frequencies of CF₃I(Cl)OCH₃ and CF₃I(OCH₃)₂

$CF_3I(Cl)OCH_3$ Raman $T = -196 ^{\circ}C$	$IR^{[a]}$ $T = -50 \text{ °C}$	$CF_3I(OCH_3)_2$ Raman T = -196 °C	$IR^{[a]}$ $T = -50 ^{\circ}\text{C}$	Assignment
2994 (12) ^[b]		3001 (41) ^[b]		v _{as} CH ₃
2984 (14)		2965 (29)	2961 w	$v_{as} CH_3$
2978 (12)		2947 (33)	2943 w	$v_{as}^{vas} CH_3$
2957 (11)	2960 w	2917 (21)	2918 w	$v_{as}^{vas} CH_3$
2938 (15)	2500 11	2517 (21)	2910 11	$v_{as}^{vas} CH_3$
2898 (11)		2903 (23)		$v_{as} CH_3$
2825 (12)	2821 vw	2838 (41)	2835 w	$v_s^{as}CH_3$
1929 (8)		. ,	1971 vw	
1465 (8)	1461 w	1458 (19)	1457 m	δ_{as} CH ₃
1459 (9)				δ_{as} CH ₃
1449 (9)				δ_{as} CH ₃
1440 (9)			1443 m	δ_{as} CH ₃
1437 (9)	1434 w			δ_{as} CH ₃
1430 (9)		1416 (9)	4.000	δ_{as}^{as} CH ₃
			1288 w	$\delta_{\rm s}^{\rm CH_3}$
1200 (0)	1255 m	1210 (0)	1255 w	$\delta_{\rm s}$ CH ₃
1209 (8)	1201 vs	1210 (9)	1201 vs	$v_{as} CF_3$
1196 (8)		1175 (0)	1107	$v_{as} \stackrel{\text{CF}_3}{\text{CF}_3}$
1194 (8)		1175 (9)	1187 s	$v_{as} CF_3$
1165 (9)		1160 (10)		$v_{as} CF_3$
1156 (8)	1042 vs	1097 (10) 1075 (14)		v _{as} CF ₃ v _s CF ₃
1045 (14)	1042 VS	1073 (14)	1054 vs	$v_s CF_3$ $v_s CF_3$
		1000 (19)	1034 vs 1018 m	v _s CI 3 v CO
977 (18)	968 m	997 (25)	989 s	v CO v CO
<i>511</i> (10)	844 m	<i>991</i> (23)	849 w	V CO
	821 sh	817 (29)	820 m	
739 (33)	738 s	745 (59)	740 s	δ_s CF ₃
()		548 (33)		$\delta_{as} CF_3$
542 (10)		542 (81)		δ_{as} CF ₃
530 (10)		532 (100)	536 s	$v_{as} IO_2$
		513 (24)	517 m, sh	
508 (100)	510 m			νIO
		411 (22)	407 m	
		353 (85)	360 s	$v_s IO_2$
313 (13)	329 w	329 (31)	324 m	δ CIO
204 (17)	204		310 m	1.01
304 (17)	304 m	200 (26)		v ICl
		290 (36)		
279 (19)	279 w	285 (47) 270 (56)	274 m	νCI
278 (18)	279 W 266 W	279 (56)	2/4 m 264 vw	
265 (59) 243 (35)	200 W	266 (26) 254 (26)	204 VW	ρ CF ₃ ρ CF ₃
243 (35)		234 (20)	238 w	δIO_2
215 (52)		230 (13)	236 W	δ CICl
213 (32)		210 (15)		U CICI
149 (20)		()		δ OICl
137 (23)		128 (24)		lattice modes
118 (13)		113 (27)		lattice modes
92 (23)		- ()		lattice modes
79 (20)				lattice modes
62 (25)				lattice modes

[[]a] vs = very strong, s = strong, m = medium, w = weak, vw = very weak, sh = shoulder. - [b] Relative intensities are given in parentheses.

Crystal Structure of CF₃I(Cl)OCH₃

CF₃I(Cl)OCH₃ crystallizes in the triclinic space group *P*I with four formula units per unit cell. The crystal data are summarized in Table 2. The molecule has a distorted Ψ-trigonal bipyramidal structure with chlorine and the methoxy group in the apical positions and the trifluoromethyl group and two lone pairs in the equatorial positions (Figure 1). This is in accordance with the Gillespie–Nyholm model and the structure can be described as T-shaped.^[10,11] Bond lengths and selected bond angles are listed in Table 3.

The unit cell contains two crystallographically independent molecules with slightly different bond lengths. The I-Cl bonds have lengths of 2.578(2) and 2.580(2) Å, about 0.3 Å longer than the sum of the covalent radii, and are 0.1 Å longer than those found in CF₃ICl₂. [2,12] For the I-O bonds, values of 1.969(5) and 1.991(5) Å are observed, these being only slightly longer than the sum of the covalent radii of 1.94 Å.[12] The molecules are arranged in chains, due to strong intermolecular I-Cl contacts. Owing to intermolecular I-O contacts, the chains are arranged in layers, stacked along the b axis. All these interactions result in the formation of ribbons of twelve-membered, centrosymmetric rings (Figure 1). In these rings, I-O-I-O parallelograms are spanned by two molecules involving I-O contacts with lengths of 3.235(5) and 3.250(5) A. On the basis of these contacts, the environment at the iodine atom can be designated as distorted square-pyramidal. Between the layers of molecules, no contacts shorter than the sum of the van der Waals radii are found.

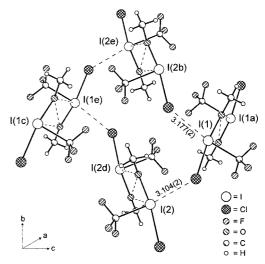


Figure 1. Fragment of the structure of $CF_3I(Cl)OCH_3$; projection of a twelve-membered ring; distances [A]: $I(1)\cdots Cl(2b)$ 3.177(2), $I(1)\cdots O(1a)$ 3.235(5), $O(1)\cdots O(1a)$ 2.864(5), $I(2)\cdots Cl(1)$ 3.104(2), $I(2)\cdots O(2d)$ 3.250(5), $O(2)\cdots O(2d)$ 2.878(5); symmetry operations: a: -x+2, -y+1, -z+1; b: x+1, y, z; c: x, y, z-1; d: -x+1, -y+1, -z; e: -x+2, -y+1, -z

Crystal Structure of CF₃I(OCH₃)₂

 $\text{CF}_3\text{I}(\text{OCH}_3)_2$ (Figure 2) crystallizes in the monoclinic space group $P2_1/n$ with four formula units per unit cell. The crystal data are summarized in Table 2 and bond lengths and selected angles are listed in Table 3. $\text{CF}_3\text{I}(\text{OCH}_3)_2$ has a T-shaped arrangement with two methoxy groups in apical positions. The I-O bonds have lengths of 2.019(11) Å

Table 2. X-ray diffraction data of CF₃I(Cl)OCH₃ and CF₃I(OCH₃)₂

	CF ₃ I(Cl)OCH ₃	CF ₃ I(OCH ₃) ₂
Space group	$P\bar{1}$	$P2_1/n$
Crystal system	triclinic	monoclinic
$a [\mathring{\mathbf{A}}]$	8.164(1)	6.295(1)
a [Å] b [Å]	8.802(1)	15.607(1)
c [A]	10.237(1)	7.736(1)
α [ο]	97.10(1)	90
α [°] β [°]	91.41(1)	111.44(1)
γ [ο]	115.00(1)	90
Volume [Å ³]	659.17(13)	707.4(2)
Density (calcd.) [g cm ⁻³]	2.644	2.422
Z	4	4
Molecular mass [g mol ⁻¹]	262.39	257.98
Absorption coefficient [mm ⁻¹]	5.231	4.516
Temperature [K]	173(2)	173(2)
F(000)	480	480
Wavelength [A]	0.71069	0.71069
θ range for data collection [°]	$3.41 \le \theta \le 30.24$	$2.61 \le \theta \le 29.28$
Index ranges	$-11 \le h \le 9$	$-8 \le h \le 8$
	$-9 \le k \le 11$	$-19 \le k \le 19$
	$-14 \le l \le 11$	$-6 \le l \le 7$
Reflections collected/independent	3913/2401	3575/1316
	[R(int) = 0.0418]	[R(int) = 0.1469]
Parameters	145	82
Goodness-of-fit on F^2	1.031	1.015
Final R indices $[I > 2\sigma(I)]$	R1 = 0.0421	R1 = 0.0672
	wR2 = 0.0989	wR2 = 0.1549
R indices (all data)	R1 = 0.0629	R1 = 0.1372
	wR2 = 0.1087	wR2 = 0.1977
Largest diff. peak and hole [e ⁻ Å ⁻³]	1.757 and -1.619	1.187 and -1.018
Refinement method	full-matrix least squares on F^2	full-matrix least squares on F^2

Table 3. Quantum-mechanically calculated bond lengths $[\mathring{A}]$ and angles $[^{\circ}]$ in $CF_3I(Cl)OCH_3$ and $CF_3I(OCH_3)_2$ in comparison with the experimentally observed values

	exp. CF ₃ I(C	Cl)OCH ₃ RHF- LANL2DZ	B3LYP- LANL2DZ		cF ₃ I(OCH ₃) ₂ RHF- LANL2DZ	B3LYP- LANL2DZ
		LANEZDZ	LANEZDZ			LANL2DZ	LANL2DZ
I1-C11	2.578(2)	2.6559	2.6806	I1-O1	2.019(11)	2.0154	2.1106
I2-C12	2.580(2)	2.6559	2.6806	I1-O2	2.087(11)	2.0268	2.1106
I1-O1	1.969(5)	1.9843	2.0996	I1-C3	2.190(12)	2.1846	2.2896
I2-O2	1.991(5)	1.9843	2.0996	O1-C1	1.40(2)	1.4338	1.4580
I1-C1	2.212(8)	2.2054	2.2815	O2-C2	1.38(2)	1.4334	1.4580
I2-C2	2.207(7)	2.2054	2.2815	ϕ C $-F^{[a]}$	1.31(2)	1.3569	1.3876
O1-C4	1.443(7)	1.4465	1.4674				
O2-C3	1.450(8)	1.4465	1.4674				
ø C-F ^[a]	1.311(8)	1.3495	1.3786				
Cl1-I1-O1	171.0(2)	170.06	171.22	O1-I1-O2	166.7(4)	165.28	169.05
C12-I2-O2	171.0(2)	170.06	171.22	O1-I1-C3	81.4(5)	86.11	84.61
C11-I1-C1	81.7(2)	81.68	83.35	O2-I1-C3	85.3(5)	79.41	84.61
C12-I2-C2	82.0(2)	81.68	83.35	C1-O1-I1	115.0(10)	129.95	120.29
C1-I1-O1	89.3(3)	88.43	88.34	C2-O2-I1	117.0(9)	129.01	120.29
C2-I2-O2	89.2(2)	88.43	88.34				
I1 - O1 - C4	116.4(4)	126.67	119.48				
I2-O2-C3	113.9(4)	126.67	119.48				

[[]a] For the sake of simplicity, the average C-F bond lengths are shown.

[I(1)-O(1)] and 2.087(11) Å [I(1)-O(2)] and are significantly longer than the sum of the covalent radii of 1.94 Å and the corresponding bonds in CF₃I(Cl)OCH₃ [1.969(5) and 1.991(5) Å].[12] The molecules present donors as well as acceptors for each secondary I-O bond, which points to the C-I bond. For iodine, a square-planar environment results. Taking the intermolecular contacts into consideration, the observed difference in I-O bond lengths due to weakening of the I(1)-O(2) bond becomes reasonable. The molecules are arranged in chains along the c axis. The CF_3 group and the methoxy group of O(1) are not involved in any intermolecular contacts and occupy the positions of side groups on the chains. A similar arrangement is found in CF₃ICl₂.^[2] The C-I distance of 2.190(12) Å is comparable to those in similar compounds such as CF₃IF₂ [2.174(6) Å], CF₃ICl₂ [2.229(10) Å], and CF₃I(ONO₂)₂ [2.212(4) Å].[1-3] The CF₃ group is almost tetrahedral with F-C-F angles of about 108° and an average C-F bond length of about 1.31(2) A.

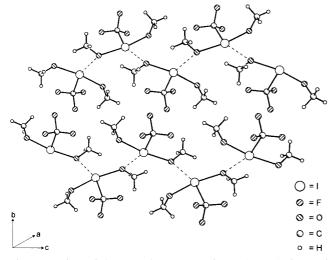


Figure 2. View of the crystal structure of $CF_3I(OCH_3)_2$ in a orientation; the intermolecular I-O contacts measure 2.749(9) Å

Quantum-Mechanical Calculations

Ab initio RHF and density functional B3LYP calculations were performed using the Gaussian 98 program.^[13] To take relativistic effects into account, calculations were carried out with the LANL2DZ basis set, which includes D95 on first-row atoms, and a Los Alamos ECP, which puts DZ on other atoms.^[14-17] Additional calculations with CEP-121G and SDD basis sets not described here yielded similar results.^[18-21] To obtain optimized molecular structures, the wavefunctions were analyzed by the natural bond orbital (NBO) method, a standard program option of Gaussian 98.^[22]

The optimized geometries for both systems are given in Table 3 and are compared with experimental data. Whereas the HF method overestimates the I–Cl bond length by about 8 pm, the density functional method B3LYP systematically overestimates the lengths of all iodine-containing bonds by about 10 pm. With the chosen basis set, the B3LYP approximation does not yield adequate results for iodine-containing systems. It should also be borne in mind that all calculations were performed for free molecules in the gas phase. Some deviations between the calculated and experimentally observed values can thus be attributed to the strong intermolecular cross-links in the crystalline solid state. In the case of CF₃I(OCH₃)₂, we could not find any explanation for the difference in symmetries calculated by the two methods.

For both compounds, NBO analyses for all methods and basis sets were performed. [22] Summarizing the calculated charges on each atom of the various ligands clearly indicates that total negative charges increase in the order: $F_3C > H_3CO > Cl$ (Table 4). The calculated charges support the assumption that the apical ligands are bound by 3-center-4-electron bonds. [5] In 1992, Boyd and Boyd reported group electronegativities calculated by the bond critical model. [23] For the CF_3 and H_3CO groups, values of 2.71 and 3.53, respectively, were calculated. [23] In accordance with Bent's

rule, this explains the apical positions of chlorine and the methoxy group in CF₃I(Cl)OCH₃ and of both methoxy groups in CF₃I(OCH₃)₂.^[4]

Table 4. Calculated and summarized NBO charges of the three different ligands in CF₃I(Cl)OCH₃ and CF₃I(OCH₃)₂; charges are given in e⁻

	CF ₃ I(Cl)OCH ₃		CF ₃ I(OCH ₃) ₂		
	RHF LANL2DZ	B3LÝP LANL2DZ	RHF LANL2DZ	B3ĹÝP LANL2DZ	
Cl H ₃ CO F ₃ C	-0.472 -0.420 -0.112	-0.616 -0.545 -0.132	-0.494 -0.210	-0.641 -0.215	

Experimental Section

Caution! $CF_3I(Cl)F$ and CF_3IF_2 are unstable at room temperature and are sensitive to moisture. Skin contact with these compounds should be avoided because their hydrolysis leads to HF or HCl, which cause burns and in some cases irreparable damage. Safety precautions should be taken when using and handling these materials.

All synthetic work and sample handling was performed using a standard glass vacuum line and standard Schlenk techniques. Nonvolatile materials were handled under dry nitrogen. The syntheses of CF₃I(Cl)F and CF₃IF₂ were carried out by treating trifluoromethyl iodide (CF₃I) with trifluoromethyl hypochlorite (CF₃OCl) at -78 °C and -50 °C, respectively, based on literature methods.^[1,9] (Methoxy)trimethylsilane [(CH₃)₃SiOCH₃] (ABCR) was used as received without any purification. Owing to the low stability of the products, we were unable to obtain reliable elemental analysis results. - The Raman spectra were recorded with a Jobin Yvon T64000 spectrometer using an Ar⁺ laser (514.5 nm) from Spectra Physics. The spectra were obtained from samples in a glass cell cooled with liquid N₂.[24] - Infrared spectra were recorded with a Bruker IFS 113v spectrophotometer. Spectra were obtained from samples coated on CsBr plates placed in a low-temperature cell.^[25] NMR spectra in SO₂ solution at -50 °C were recorded with Bruker DPX 300 and Bruker DRX 400 spectrometers. - Single crystals were placed in Lindemann capillaries in a cooled stream of dry nitrogen, and X-ray diffraction data were collected using a Nonius Kappa CCD diffractometer. The crystal structures were solved by the Patterson method and successive difference Fourier syntheses. For refinement, full-matrix least-squares methods were applied. Data reduction, structure solution, and refinement were carried out with programs in the SHELXTL package, PLATON, MISSYM, and PARST.[26-30]

Quantum-Mechanical Calculations: Hartree—Fock and density functional calculations were performed with the program Gaussian 98.^[13] In the density functional B3LYP,^[31] the 3-parameter exchange functional by Becke^[32] and the correlation functional by Lee, Yang, and Parr^[33] were used. The LANL2DZ basis set contains a D95 basis^[14] for elements of the first period and an effective core potential and a double-zeta basis for elements from sodium to bismuth.^[15–17] For the geometry optimization, different starting coordinates were chosen. The calculation of the vibrational frequencies showed whether or not the energy-minimized structures represented stable molecules. All frequencies were positive, indicating that at least local minima on the Born—Oppenheimer hypersurface were found.

Preparation of CF₃I(Cl)OCH₃: In a typical reaction, (CH₃)₃Si-OCH₃ (0.26 g, 2.50 mmol) was condensed onto CF₃I(Cl)F (0.50 g, 2.00 mmol) in a dry glass vessel with greaseless stopcocks (Young). The mixture was then allowed to warm to -80 °C and was maintained at this temperature for 30 min. After removal of the volatile materials in vacuo at -70 °C, the formation of 0.39 g (1.49 mmol, 74%) of methoxy(trifluoromethyl)iodine(III) chloride, CF₃I-(Cl)OCH₃, was observed. The resulting colourless solid was found to be stable up to -40 °C and sensitive to moisture. - NMR: 19 F: $\delta = -29.68$ (s, CF₃). $- ^{13}$ C: $\delta = 67.47$ (s, CH₃), 83.09 (q, $^{1}J = 344$ Hz, CF₃). $- ^{1}$ H: $\delta = 4.13$ (s, CH₃).

Preparation of CF₃I(OCH₃)₂: (CH₃)₃SiOCH₃ (0.52 g, 5.00 mmol) was condensed onto CF₃IF₂ (0.47 g, 2.00 mmol) in a dry glass vessel with greaseless stopcocks (Young). The mixture was allowed to warm to -50 °C and was maintained at this temperature for 1 h. After removal of the volatile materials in vacuo at -50 °C, the formation of 0.24 g (0.93 mmol, 48%) of dimethoxy(trifluoromethyl)iodine(III), CF₃I(OCH₃)₂, was observed. The resulting colourless solid was found to be stable up to -40 °C and sensitive to moisture. - NMR: 19 F: $\delta = -28.42$ (s, CF₃). $-^{13}$ C: $\delta = 63.21$ (s, CH₃), $\delta = 81.19$ (q, $^{1}J = 344$ Hz, CF₃). $^{-1}$ H: $\delta = 4.36$ (s, CH₃).

Acknowledgments

This work was supported by the Fonds der Chemischen Industrie.

- [1] R. Minkwitz, M. Berkei, Inorg. Chem. 1998, 37, 5247-5250.
- [2] R. Minkwitz, M. Berkei, Inorg. Chem. 1999, 38, 5041-5044.
- [3] R. Minkwitz, T. Hertel, H. Preut, Z. Anorg. Allg. Chem. 1995, 621, 1552-1557.
- [4] H. A. Bent, Chem. Rev. 1961, 61, 275-311.
- [5] A. Varvoglis, in *The Organic Chemistry of Polycoordinated Iod-ine*, VCH, Weinheim, 1992, p. 1–119.
- [6] J. F. Kinneary, J. S. Albert, C. J. Burrows, J. Am. Chem. Soc. 1988, 110, 6124-6129.
- [7] D. Naumann, L. Deneken, E. Renk, J. Fluorine Chem. 1975, 5, 509-519.
- [8] G. Oates, J. M. Winfield, J. Chem. Soc., Dalton Trans. 1974, 119-124.
- [9] R. Minkwitz, R. Bröchler, M. Schütze, Z. Anorg. Allg. Chem. 1995, 621, 1727-1730.
- [10] R. J. Gillespie, R. S. Nyholm, Quart. Rev., Chem. Soc. 1957, 11, 339-380.
- [11] R. J. Gillespie, J. Chem. Educ. 1963, 40, 295-301.
- [12] A. Bondi, J. Phys. Chem. 1964, 68, 441-451.
- [13] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle, J. A. Pople, Gaussian 98 (Revision A.1), Gaussian, Inc., Pittsburgh PA, 1998.
- [14] T. H. Dunning, Jr., P. J. Hay, in *Modern Theoretical Chemistry* (Ed.: H. F. Schaefer, III), Plenum, New York, **1976**, p. 1–28.
- [15] P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 270-283.
 [16] W. R. Wadt, P. J. Hay, J. Chem. Phys. 1985, 82, 284-298.
- [17] P. J. Hay, W. R. Wadt, J. Chem. Phys. **1985**, 82, 299–310.
- [18] W. Stevens, H. Basch, J. Krauss, *J. Chem. Phys.* **1984**, *81*, 6026–6033.
- [19] W. J. Stevens, J. Krauss, H. Basch, P. G. Jasien, Can. J. Chem. 1992, 70, 612-630.
- [20] T. R. Cundari, W. J. Stevens, J. Chem. Phys. 1993, 98, 5555-5565.

- [21] U. Wedig, M. Dolg, H. Stoll, H. Preuss, in *Quantum Chemistry: The Challenge of Transition Metals and Coordination Chemistry* (Ed.: A. Veillard), Reidel, Dordrecht, **1986**, p. 79.
- [22] A. E. Reed, L. A. Curtis, F. Weinhold, Chem. Rev. 1988, 88, 899-926.
- [23] R. J. Boyd, S. L. Boyd, J. Am. Chem. Soc. 1992, 114, 1652–1655.
- [24] A. Werner, Dissertation, University of Dortmund, Germany, 1988.
- [25] L. Bayersdorfer, R. Minkwitz, J. Jander, Z. Anorg. Allg. Chem. 1972, 392, 137-142.
- [26] G. M. Sheldrick, SHELXTL-PLUS: An Integrated System for Solving, Refining, and Displaying Structures from Diffraction Data, University of Göttingen, Germany, 1987.
- [27] A. L. Spek, "The EUCLID Package", in Computational Crys-

- tallography (Ed.: D. Sayre), Clarendon Press, Oxford, 1982, p. 528.
- [28] Y. Le Page, J. Appl. Crystallogr. 1987, 20, 264-269.
- [29] M. Nardelli, *Comput. Chem.* **1983**, 7, 95–98.
- [30] Crystallographic data (excluding structure factors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication nos. CCDC-141229 [CF₃I(Cl)OCH₃] and -141228 [CF₃I(OCH₃)₂]. Copies of the data can be obtained free of charge on application to the CCDC, 12 Union Road, Cambridge CB2 1EZ, U.K. [Fax: (internat.) + 44-1223/336-033; E-mail: deposit@ccdc.cam.ac.uk].
- [31] B. Miehlich, A. Savin, H. Stoll, H. Preuss, Chem. Phys. Lett. 1989, 157, 200-206.
- [32] A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652.
- [33] C. Lee, W. Yang, R. G. Parr, *Phys. Rev. B* **1988**, *37*, 785–789. Received March 6, 2000 [100089]